

Experimental comparison of piezoelectric and magnetostrictive shunt dampers

Vivake M. Asnani

NASA Glenn Research Center Materials and Structures Division, Rotating and Drive Systems Branch Cleveland, OH 44135 USA, <u>vivake.m.asnani@nasa.gov</u>

Zhangxian Deng and Marcelo J. Dapino

NSF Industry & University Cooperative Research Center on Smart Vehicle Concepts The Ohio State University, Department of Mechanical & Aerospace Engineering Columbus, OH 43210 USA

Justin J. Scheidler

Universities Space Research Association at NASA Glenn Research Center Materials and Structures Division, Rotating and Drive Systems Branch Cleveland, OH 44135 USA

Introduction

Motivation, objectives, and scope

Experiment

Load frame testing of shunt dampers

Results

Frequency response comparison

Summary and conclusions

- Introduction
 - Motivation, objectives, and scope
- Experiment
 - > Load frame testing of shunt dampers
- Results
 - > Frequency response comparison
- Summary and conclusions

Driveline vibration effects

- Vibration is a side effect of transferring power through a rotating driveline.
- It causes functional issues, like reduced precision in cutting tools.
- Vibration generated by rotorcraft gearing causes cabin noise in excess of 100 dB!
- This environment prohibits widespread use of rotorcraft for civilian transportation.

Reduced cutting precision

Extreme noise levels in rotorcraft

Driveline damping using the vibration ring

- The vibration ring is designed to incorporate damping elements into a driveline
- Force is transferred through the elements to create vibration isolation and damping
- Damping elements must have high stiffness to maintain the driveline alignment.

Material property comparison

Application	Material	Modulus (GPa)	Loss factor
Driveline components	Steel	200	0.0005
Vibration damping treatment	Rubber	0.05	0.50
Vibration ring damping elements	TBD	5 to 35	Maximize

Shunt damper options

- High stiffness smart materials: Piezoelectric ceramics and magnetostrictive metals
- Electrical ⇔ mechanical, Magnetic ⇔ mechanical

Piezoelectric schematic

Energy flow diagrams

Objectives and scope

- **Objective**: Characterize 3 candidate shunt damping devices
- Maximize damping at 750Hz
- Measure electro-mechanical response to vibratory force up 1000 Hz
 - > Stiffness, damping
 - ➤ Internal vs. shunt energy dissipation

- Introduction
 - Motivation, objectives, and scope
- Experiment
 - Load frame testing of shunt dampers
- Results
 - > Frequency response comparison
- Summary and conclusions

Test articles

Piezoelectric shunt dampers

- Piezoceramic: Soft-doped polycrystalline co-fired lead zirconate titanate (PZT)
- Single crystal: Lead magnesium niobate-lead titanate (PMN-30%PT)
- Nominal: 5mm x 5mm x 16mm

Magnetostrictive shunt damper

Terfenol-D

- Terbium, dysprosium and iron rod (Tb_{0.3}Dy_{0.7}Fe_{1.92})
- Alnico grade 8 magnets
- Optimized (500-turn 30AWG) pickup coil
- Nominal: 7mm diameter, 10mm long

Test setup

Dynamic load frame assembly

-Piezoceramic case-

Provision to minimize error

- Even pressure on sample face
- Minimized inertial force error
- Magneto setup: Moving magnets
 - Attractive forces did not corrupt force
 - Did not generate voltage error
- Sensor channels were phase aligned

Removed data influenced by resonance

- Resonance at 1.0 to 1.2kHz
- Maximum data
 - Piezoceramic 923 Hz
 - Single crystal 804 Hz
 - Terfenol-D 350 Hz (higher harmonics)

Data processing

Effective compressive modulus
$$=$$
 $\left(\frac{\text{height}}{\text{area}}\right)$ stiffness

- Both contribute to damping
- High shunt loss factor required for tuning damping frequency or for energy harvesting

Test stages

- **Optimize prestress**
 - Maximize energy conversion

Refer to manuscript for details

- **Optimizing resistance at 750Hz**
 - Maximize shunt loss factor
- 3. Measuring frequency response
 - Optimal prestress & optimal shunt resistance
 - Frequency varied in steps from 2 Hz to 1000 Hz
 - Compute metrics

Discussed here

Nominal dynamic stress amplitude

Piezoceramic: 8.0 MPa Single crystal: 4.0 MPa Terfenol-D: 7.3 MPa

- Introduction
 - Motivation, objectives, and scope
- Experiment
 - Load frame testing of shunt dampers
- Results
 - > Frequency response comparison
- Summary and conclusions

Frequency response (1 of 2)

Modulus

- Quasi-static: Piezoceramic roughly 2x
 Single Crystal and Terfenol-D
- Piezoceramic and Single Crystal trends: Increase with frequency. Expected based on electric-charge stiffening
- Terfenol-D trend: Decreases and then increases after 100 Hz. Increase is explained by <u>magnetic field stiffening</u>. Initial decrease is unexplained.

Internal loss factor

- Quasi-static: Terfenol-D > Single crystal > Piezoceramic
- Piezoceramic and Single Crystal trends: Slight inverse relationship with modulus.
- Terfenol-D trend: Unexpected, sharp increase after 30Hz. 3D COMSOL simulation indicates magnetic energy inducing eddy currents in aluminum magnet fixture

Shunt loss factor

- Peak: Near 750Hz Single crystal > Piezoceramic > Terfenol-D
- Piezoceramic and single crystal: Peak shunt losses >> internal losses Potential for energy harvesting
- Terfenol-D Relatively low shunt loss. Result of eddy current dissipation

Total loss factor

 All devices: Same order of magnitude as rubber.

Terfenol-D

- Highest total loss across all frequencies
- Dominated by eddy current losses
 - Peak not tunable
 - Coil and shunt not needed

- Introduction
 - Motivation, objectives, and scope
- Experiment
 - Load frame testing of shunt dampers
- Results
 - > Frequency response comparison
- Summary and conclusions

Summary

Evaluated three high-stiffness shunt damping devices.

Piezoelectric stacks

- Piezoceramic (PZT)
- ➤ Single crystal (PMN-30%PT)

Magnetostrictive rod with pickup coil and bias magnets

- ightharpoonup Terfenol-D (Tb_{0.3}Dy_{0.7}Fe_{1.92})
- Bias stress and shunt resistance were optimized for maximum damping at 750 Hz.
- Carefully controlled load frame experiments \rightarrow dynamic force applied up to 1000 Hz.

Conclusions

- Unique/accurate data set for validating piezoelectric and magnetostrictive models.
- All devices: Reasonable for driveline damping application
 - Moduli 1 order of magnitude lower than steel (3 orders higher than rubber)
 - Loss factors on the same order as rubber
- **Single crystal:** Highest shunt loss factor- best tunable damper or energy harvester
- Terfenol-D: Highest total loss factor- best non-tunable damper
 - Unintentional eddy current losses due to aluminum magnet holder
 - Reconfigure device in 2 ways
 - Non-conductive magnet holder \rightarrow increasing tuning and energy harvesting
 - 2. Get rid of coil and shunt → more compact/simpler device. Would continue to be an effective damper at high frequencies.

